F. Raymond Salemme is the current president of Implex, a technology consulting company. Prior to working for Implex, Salemme founded 3-Dimensional Pharmaceuticals, Inc. (3DP), a publicly traded biotechnology company (NASDAQ DDDP). Prior to founding 3DP, Salemme established and directed research groups for biophysics, computational chemistry, and structure-based drug design at Sterling Winthrop Pharmaceuticals and DuPont Merck Pharmaceuticals.

Salemme holds a Bachelor of Arts in Molecular Biophysics from Yale University and a Ph.D. in Chemistry from the University of California, San Diego. Salemme has 21 United States patents and has authored approximately 90 scientific papers. He serves on several corporate scientific and academic advisory boards, as well as federal advisory committees on advanced technology and biotechnology.

Lecture Topic:

Design Principles for Self-Assembling Nanostructures from Macromolecules

This lecture will outline strategies for producing devices with molecular scale components that combine aspects of the “top-down” approach used for conventional MOSFET device design, with a “bottom-up” approach to self-assembly common to biological systems. It will address the key issues involved in the design and functional optimization of individual molecular components, followed by their controlled hierarchical organization into large-scale functional assemblies.

Lecture will be held on Monday, February 16, 2004 at 10:00 a.m.
Engineering Center, Room 2300.
10555 West Flagler Street
Miami, FL 33174

For more information, contact the Department of Biomedical Engineering at 305.348.6950 or visit WWW.BME.FIU.EDU

The Department of Biomedical Engineering at Florida International University is constantly undertaking research on protein-based nanotechnology (www.eng.fiu.edu/bmei/renu). This includes a lengthy understanding of protein structure, dynamics, and engineering. Because of its inter-disciplinary nature, protein-based nanotechnology encompasses chemistry, biology, and physics. This seminar series will focus on cutting-edge bionanotechnology and its benefits to society.