SACS Program Outcomes:

1. The BSBME program will produce graduates with the skills necessary for admission to graduate school or medical school.
2. The BSBME program will produce graduates with the skills necessary to obtain jobs in the biomedical industry.
3. The BSBME program will produce graduates who have a proper sense of professional responsibilities, service to community, leadership, ethics and means of effective communication.

SACS Student Learning Outcomes

1. Ability to apply knowledge of mathematics (including differential equations and statistics), physical and life sciences, and engineering to carry out analysis and design to solve problems at the interface of engineering and biology.
2. Ability to use critical thinking to design a system, component, or process to meet desired needs, including systems that involve the interaction between living and non-living materials, within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.
3. Ability to design a system, component, or process to meet desired needs, including systems that involve the interaction between living and non-living materials, within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.
4. Ability to identify, formulate and adapt engineering solutions to unmet biological needs.
5. Ability to use the techniques, skills, and modern engineering tools necessary for engineering practice, including the ability to model and analyze biological systems as engineering systems.
6. Ability to function on multi-disciplinary teams.
7. Ability to communicate effectively in the field of biomedical engineering.
8. Awareness of the characteristics of responsible professional engineering practice, including ethical conduct, consideration of the impact of engineering solutions on society in a global and contemporary context, and the value of life-long learning.
9. Ability to use engineering technology such as advanced instrumentation, computer modeling and software for engineering applications as well as data evaluation.
Tools used for assessment: Individual course outcomes evaluations surveys filled out by the students in each course. Senior Design Faculty and External Evaluation forms measuring student performance, Student Laboratory Evaluations measuring student performance, Student Exit Surveys, Alumni Surveys and Employer Surveys.